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LETTER TO THE EDITOR 

Finite size scaling analysis of the dilute Baxter-Wu model 

Wolfgang Kinzel?, Eytan DomanyS and Amnon AharonyP 
Department of Electronics, Weizmann Institute of Science, Rehovot, Israel 

Received 9 July 1981 

Abstract. The finite size scaling method is used to study the critical properties of the spin-1 
Baxter-Wu model as function of the fugacity, z ,  of the vacant (spin zero) sites. For z = 0, the 
thermal exponent converges very quickly to the (exact) value yl = 3/2. For z > 0,. yl 
monotonically increases beyond the value 2. This increase is interpreted as indicating a 
first-order transition. Out of several possible renormalisation group flows, the results seem 
to favour the one in which the critical Baxter-Wu Hamiltonian flows to the fixed point of the 
4-state Potts model, with the amplitude of the marginal operator equal to zero. 

There has been considerable recent interest in phase transitions and critical behaviour 
of q-state Potts models in two dimensions (for an excellent review, see Wu 1981). This 
interest is motivated, on the one hand, by the availability of increasingly accurate 
experimental observations on physical systems (Bretz 1977, Tejwani et a1 1980, 
Roelofs et a1 1981) that exhibit transitions predicted to be in various Potts universality 
classes (Alexander 1975, Domany et a1 1977). On the other hand, considerable 
theoretical progress has been achieved, ranging from exact results on Potts (Baxter 
1973) and related (Baxter and Wu 1973, Baxter 1980) models, to conjectured 
relationships (den Nijs 1979, Burkhardt 1980, Nienhuis et a1 1980a) between Potts and 
eight-vertex exponents. These conjectures have recently been substantiated by both 
analytic (Black and Emery 1981, Nienhuis 1981) and numerical (Nienhuis et al 1979, 
1980b) work. In particular, the den Nijs conjecture has been extended to Potts 
tricritical exponents by Nienhuis et al, who also presented a mechanism that describes 
the manner in which the transition becomes first order for q > qc = 4. 

According to their picture, based on real space renormalisation group calculations, 
the critical and tricritical fixed points, when viewed as functions of continuous q, 
constitute two branches of the same function. As q + 4-, the two branches merge, 
implying the existence of a marginal operator for the q = 4 Potts model, giving rise to 
logarithmic corrections (Nauenberg and Scalapino (NS) 1980). This picture was 
obtained by viewing the q-state Potts models as a special subspace of more general 
(q  + 1)-state Potts lattice gas (PLG) models (Berker et a1 1978) in which a site can be 
either in one of the q Potts states or ‘vacant’. 

The dilution operator, which controls the density of vacancies, plays a central role in 
the picture mentioned above; this is the operator which becomes marginal as q + 4. 
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Various calculations can be viewed as supporting this picture, and in particular, the 
existence of a marginal operator and logarithmic corrections for q = 4. Herrmann 
(1981) has studied the quantum mechanical version of the model, and found explicitly 
the logarithmic corrections. Methods such as series analysis (Zwanzig and Ramshaw 
1977), Monte Carlo renormalisation group (Eschbach et a1 1981) and finite size scaling 
(Blote et a1 1981) which proved to yield the thermal exponent of various models with 
good accuracy and reasonably fast convergence, have failed to reproduce the expected 
value of y t=3 /2  (or a =2/3) .  This can be viewed as a manifestation of slow con- 
vergence to the fixed point, and of logarithmic corrections that obscure the dominant 
behaviour. 

An apparent difficulty with this picture is posed by the Baxter-Wu (Baxter and Wu 
(BW) 1973) model. This model is believed, on the basis of symmetry, to belong to the 
4-state Potts universality classt (Domany and Riedell978). Indeed, the exact solution 
yields the value a = 2 / 3  for the specific heat exponent, in agreement with the con- 
jectured value (den Nijs 1979) for the 4-state Potts model. However, unlike the 4-state 
Potts model, the exact BW solution does not contain logarithmic corrections. 

The aim of the present letter is to understand this apparent contradiction. In order 
to study this question, we generalise the BW model by introducing annealed vacancies. 
The Hamiltonian is thus written as 

where Si = 1, 0, -1 and ( i jk )  denotes a triplet of nearest neighbour sites of a triangular 
lattice. The parameter z =e-* represents the fugacity of the vacancies. The original 
spin-$ BW model is recovered in the limit z = 0. It is the addition of similar vacancies 
that enabled Nienhuis et a1 (1979) to find that the q-state Potts model becomes first 
order for q > qc (or for large z ) .  As NS note, $ = z - zc becomes marginal at the 
multi-critical point q = qc = 4 and yields logarithmic corrections to the 4-state Potts 
model. In fact, NS conjectured that such corrections are absent in the BW model because 
it happens to have $ = 0. 

In general, we expect that the addition of vacancies will yield a critical line Kc(z) .  
The transition at z = 0 is second order (Baxter and Wu 1973). The transition at T = 0 is 
expected to be first order because of the clustering of occupied sites. One may thus 
expect a tricritical point at some intermediate point. A priori, there exist several possible 
renormalisation group (RG) scenarios by which the absence of logarithmic corrections in 
the BW model can be explained: (i) The BW and the 4-state Potts models might be 
described by completely orthogonal parameter spaces, with no RG flows relating them 
to each other. In this case, the critical surface of the BW model is indeed described by 
the single parameter 2. If the tricritical point occurs at some finite value of z ,  then the 
fixed-point structure on the critical line would have to be described as in figure l ( a ) :  the 
Hamiltonian flows to the critical fixed point (Bwc) for small z ,  and to the discontinuity 
fixed point (D, z = co) for large z ,  the two regions being separated by the tricritical point 
(BWT). Note that the critical and tricritical points coincide in the case of the 4-state Potts 
model, yielding the logarithmic corrections in that case. The absence of such cor- 
rections in the exact solution of the BW model rules out the possibility that BWC and BWT 
coincide. (ii) There could exist an additional (unknown) parameter q5, which connects 
the BW model to the 4-state Potts model. In that case, the critical surface will become 

t This was first pointed out by R B Griffiths. 
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Figure 1. Possible renormalisation group flow scenarios for the BW model. BW = initial 
Baxter-Wu model Hamiltonian; BWC = BW critical fixed point; BWT = BW tricritical point; 
D =discontinuity fixed point; 4~ = initial 4-state Potts model Hamiltonian; 4PCT = 4-state 
Potts fixed point. 

two dimensional, and three possible flows are shown in figures 1(b), (c) and (d ) .  The 
introduction of vacancies might change both z and c$, and have flows to the critical- 
tricritical 4-state Potts model fixed point, ~ P C T ,  or to one of the BW fixed points 
mentioned above. Figure l ( b )  describes a situation in which the ~ P C T  fixed point is 
unstable with respect to the operator leading to the BW model. As far as the BW model is 
concerned, the predictions remain as in scenario (a) .  (iii) Figure l ( c )  describes the 
opposite situation, in which the ~ P C T  point is stable. If dilution moves the BW model to 
the right and down, then this picture implies a region of second order which is described 
by the ~ P C T  point (including logarithmic corrections). A first-order transition will result 
if dilution moves the BW model to the left. Note that although the BW and the 4-state 
Potts models have the same critical exponents, they are described in both figures l ( b )  
and l ( c )  by two distinct fixed points. (iv) Finally, we could have onlyone fixed point, i.e. 
that of the 4-state Potts model ~ P C T  (figure l(d)), that governs the critical behaviour of 
the BW model as well. 

In order to decide which of these pictures is correct, we performed a finite size 
scaling analysis of the model (1) (Fisher and Barber 1972, Nightingale 1976). We 
obtained the critical coupling K,  and the thermal critical exponent yt from the equation 

where t = (K  -&)/Kc and 6 is the correlation length of an infinite strip of width N and 
N' respectively, which is calculated exactly from the ratio of the two largest eigenvalues 
of the transfer matrix. Since our model equation (1) has three states per lattice site we 
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had to find the largest eigenvalues of a 3N x 3N transfer matrix T. This was done by 
writing T as a product of N sparse matrices and calculating the eigenvalues by 
numerical iteration (Nightingale 1976). K, and yr for fixed z =e-* were obtained from 
equation (1) by calculating ( ( t ,  1 / N )  for two different strip widths N and N’. We used 
strips up to N = 8 with periodic boundary conditions which did not destroy the 
ground-state structures. 

For the pure Baxter-Wu model (2 = 0 in equation ( l ) ) ,  we obtained K, = 0.43938, 
0.44044 and yt  = 1.504,1.501 for strips NIN’ = 416 and 618, respectively, which agrees 
well with the exact result (Baxter and Wu 1973) K, = 0.44068 and yt  = 1.5. The fast 
convergence with N confirms the absence of logarithmic corrections. 

The results for the diluted case z f O  are shown in figures 2 and 3. y t  strongly 
increases with z ,  to values much larger than y = 2. This result is obviously in contradic- 
tion with cases (i) and (ii). Experience with other tricritical points (Kinzel and Schick 
1981) shows that in these cases we expect y t  to approach the pure value yt = 1.5 for z 
less than the tricritical value zt, and then to increase inside the first-order region. 

The same reasoning implies that if figure l (c )  were correct, the addition of z causes 
the BW Hamiltonian to flow to the left-hand side of the picture, and not towards the ~ P C T  

fixed point. On the other hand, the picture suggested by Nienhuis et a1 (1979) implies 
that vacancies move the 4-state Potts Hamiltonian downwards, through the ~ P C T  fixed 
point. It is difficult to visualise how these two directions of flow can coexist. Moreover, 
the possibility (iii) contains the unaesthetic feature of having two distinct fixed points for 
the two universally equivalent models. Although this picture is not completely ruled 
out, we find it very unlikely. 

We are thus left with figure l(d). We argue that our results are fully consistent with 
this picture. For z = 0 the BW model flows to the ~ P C T  fixed point, and therefore the two 
models exhibit the same exponents. As soon as z > 0, the dilute BW model flows to the 
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Figure 2. Dependence of K, on z from finite size 
scaling. size strips. 

Figure 3. Dependence of y on z from several finite 
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D fixed point, implying a first-order transition. The fact that we find no finite range of z 
values in which the transition is second order implies that the BW initial Hamiltonian 
indeed occurs exactly on the separatrix line, on which the parameter (I, of NS is exactly 
zero. 

Our conclusion is supported also by the following qualitative considerations. The 
(full lattice) BW model can be related to the dilute 4-state Potts model by a prefacing 
transformation (Berker et a1 1978). The triangular lattice can be broken into interac- 
ting triangular cells with three Ising spins per cell. A cell has eight possible states, four 
of which [(+++), (+--); (-+-), (--+)I appear in one of the ground-state configura- 
tions of the BW model. Each of these states can be projected onto one of four equivalent 
Potts cell states, while the remaining four cell states, that are 'disordered', are projected 
onto a vacancy. Thus the model obtained after prefacing may correspond to a dilute 
4-state Potts model with some additional irrelevant operators, and precisely the correct 
amount of dilution that corresponds to (I, = 0. Addition of vacancies to the BW model 
will obviously increase the amount of vacancies in the 4-state Potts model obtained by 
prefacing, thereby driving the transition immediately to first order. This picture also 
indicates a possible manner in which the BW model could be driven to the other side of 
the (I, = 0 line, i.e. introduction of interactions that will cause the four cell states that are 
projected onto a vacancy to be less suppressed. (This might be done by adding further 
neighbour interactions.) Such an operator, together with the dilution introduced 
above, may provide a way to drive the BW model to a continuous transition with 
logarithmic corrections. This possibility was not checked numerically, since intro- 
duction of further than nearest neighbour interaction necessitates working with two row 
to two row transfer matrices, which are too large to handle efficiently; however, Monte 
Carlo simulations of such models may be of use. 

Unfortunately a theory of the behaviour of ( ( t ,  1/N) at a first-order transition is still 
missing. However, experience with other first-order transitions (Kinzel and Schick 
1981, Blote et a1 1981) show that y ,  increases as a function of parameters which change 
the transition from second to first order. y, does not approach the value y, = 2 which is 
predicted if the first-order transition is described by a discontinuity fixed point 
(Nienhuis and Nauenberg 1975), rather it takes values much larger than y ,  = 2 inside the 
first-order region. We see the same behaviour in our model, figure 2. Thus we conclude 
that our results support the existence of a first-order transition for non-zero values of 
z = e-', in agreement with the RG scenario of figure l(d). The conjecture of NS, that 
both the 4-state Potts and the BW models'are described by the same fixed point, thus 
finds some support. 
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